
Domain Generalization in Numerical Datasets
Christopher Brokenshire

College of William and Mary
Email: cmbrokenshire@wm.edu

Anna Seiple
College of William and Mary

Email: asieple@wm.edu

Harry Choi
College of William and Mary

Email: hpchoi@wm.edu

I. INTRODUCTION

The field of machine learning has made significant strides,
particularly in image classification, a key area of focus for data
scientists. This journey began with the creation of the MNIST
dataset, comprising 60,000 hand-drawn digits, which laid the
foundation for developing models capable of classifying rela-
tively simple images. Over time, these models have evolved,
achieving greater sophistication and accuracy, especially with
the introduction of Convolutional Neural Networks (CNNs).
This advancement led to groundbreaking performance, with
classification accuracies reaching as high as 99.14 percent, a
milestone marked by the development of models like LeNet.

However, despite these successes, a persistent challenge has
been the ability of these models to generalize. When models
trained on the MNIST dataset are tested on other similar
datasets, such as USPS or SHVN, their performance sig-
nificantly deteriorates. This issue underscores a fundamental
limitation in current machine learning models: their inability
to adapt to different representations of the same underlying
concept, such as numerals presented in varying styles. The
question that emerges is whether it is possible to develop
models capable of adapting to new, unseen data. Addressing
this challenge, the paper ”Adversarial Discriminate Domain
Adaptations” proposes an innovative solution. It suggests a
methodology for building adaptable models that can transfer
their learning from a known (source) domain to correctly clas-
sify data in an unknown (target) domain, even in the absence of
labels. This approach marks a significant advancement in the
pursuit of creating more flexible and robust machine learning
models, capable of handling the diverse and dynamic nature of
real-world data as we see in healthcare or even sports analytics.

In this paper, we will discuss the team’s implementation of
the ADDA model, following a rough code outline discovered
online. Our discussion will cover our journey in understanding
the conceptual ideas of the original paper, as well as the
LeNet architecture. Our aim is to acquire a comprehensive
understanding necessary to resolve the existing issues. The
ultimate objective is to determine whether we can effectively
adapt the USPS dataset for accurate classification by a model
trained on the MNIST dataset.

II. ADVERSARIAL DISCRIMINATIVE DOMAIN ADAPTATION

Before breaking down the paper’s solution, it is important
to first define encoders and classifiers. An encoder is a com-
ponent of a neural network that essentially encodes input data
based on extracted features such that a classifier can then take

that encoding and map it to an output class. For example, in the
case where the input data is images, the encoder transforms the
images into an abstract representation that attempts to capture
the essential information that helps distinguish different pic-
tures. Subsequently, the classifier receives the encoder’s output
and predicts the given classes of the input image based on the
encoding.

Now transitioning to ADDA, with respect to digit image
data, the whole premise is to develop models that are trained
on one domain (source) of images and can still robustly
classify images from a different domain (target) that does not
contain labels. This can only be accomplished by aligning the
source and target encoders to produce the same output for the
same number. For example, let’s say we have an image of a ‘3’.
Ideally, the mapping of the source and target encoders should
both be similar, so that the image is properly classified as a 3
by the classifier. However, if the ‘3’ from the target domain
has a completely different representation than the ‘3’ from
the source domain, it is unlikely that the respective encoders
will produce similar encodings leading to misclassification.
Thus, we want to minimize variations between the style in
which the domains are encoded so the classifier can classify
the representations of each digit, regardless of how different
their representations original were. So how do we do this?

As the paper’s authors write, domain adaptation is accom-
plished through adversarial training. After the pre-training of a
source encoder CNN and the introduction of a target encoder,
we introduce a domain discriminator. A discriminator is a
neural network that attempts to distinguish which domain the
images (representations) are from. Additionally, an adapter
is a neural network that dynamically adjusts internally when
there are changes to input data. Therefore, since the target
encoder is an adaptive neural network, it learns to reduce the
domain discriminator’s ability to differentiate between source
and target images; or, in other words, it learns to disguise
target representations so that the discriminator is fooled into
believing it is from the source encoder. 1

The target encoder and domain discriminator are essentially
pitted against each other, for they are trained simultaneously
to optimize two competing objectives as you can see in the
loss functions below.

Before continuing, let’s lay out the key terms in both loss
functions. Xs and Xt represent the source and target images,

1Eric Tzeng et al., ”Adversarial Discriminative Domain Adaptation,”
arXiv:1702.05464 (2017): 3,
https://arxiv.org/pdf/1702.05464.pdf.



Fig. 1. Discriminator and Target Encoder Loss Functions

respectively; Ms and Mt are the encodings produced from each
domain’s respective encoder; and D is the discriminator that
determines if the encoding are from the source encoder or
not.2

The way adversarial training works is that iterates back
and forth between optimizing the two loss functions. The
target encoder learns to ”disguise” its encodings as coming
from the source domain. On the other hand, the discriminator
is optimized to correctly identify the encodings’ respective
encoder. In other words, the target encoder is trained to better
fool the discriminator, while conversely the discriminator is
updated to better identify the encoding discrepancies. Ideally,
this adversarial process converges when the encoding repre-
sentations from the target encoder are indistinguishable from
the source encoders’ representations, thus the discriminator
can’t distinguish between encodings of the target and source
domains anymore. At this point, ADDA finally uses the source
classifier, which was fixed and trained on the source encoder
at the beginning, to make accurate predictions on the target
domain with the adapted target encoder.3

III. LENET MODEL

Upon initial analysis of the base code, there were several
bugs, mainly related to indexing errors, which had to be sorted
through in order to completely run through the program. Once
those bugs were fixed, the program was able to run end to
end. However, the accuracy was extremely low, being only
6 percent for predicting figures from the USPS dataset. This
indicated the need for tuning the neural networks of both the
encoders and discriminator, however to do so properly we
must first understand the intricacies of the architecture of each
neural network.

The basic structure of the discriminant neural network is a
set of fully connected layers. The NN begins by using the
pytorch library to map the input to the first hidden layer,
later applying ReLU to the hidden layers’ output to create
nonlinearity. It repeats this process twice lastly calling the
LogSoftMax function on the output to normalize the results of
the network to a probability distribution for the classification
items.

Both the target and source encoders are convolutions neural
networks, meaning they are built to learn image features
extracted using convolutions.

The goal of a convolution is to extract the important features
of an image to create feature maps. This is done by applying a

2Tzeng et al., ”Adversarial Discriminative Domain Adaptation,” 3.
3Tzeng et al., ”Adversarial Discriminative Domain Adaptation,” 6.

kernel filter to the image, which slides around portions of the
image, to detect the prominent qualities of the image. These
kernels can be designed to detect different patterns, like edges,
curves, or sharpening the image. Typically the convulution
layer will apply several kernels to the input image, each kernel
acting a feature map. Similar to a typical neural net, we then
apply a ReLU function to these feature maps.

Once this convolution layer has outputted a set of feature
maps, the next layer consists of max pooling.

Max pooling is used to identify the most important features
within a set of feature maps, thus reducing the dimensions of
the output. This is implemented by dividing the feature map
into sections, based on input parameters, and selecting the
most prominent features within each of those sections. The
important features are detected by finding the values with the
maximum activation value within each section. These values
are then outputted creating a feature map which has smaller
dimensions, yet has still retained the most needed features of
the image.

These layers alternate, extracting prominent patterns within
the image, until it outputs with a fully connected layer whose
output is 500 dimensional vector which is the encoding the
classifier uses to map the image to a class.

IV. WHAT WE DID

As we can see from the results, the target encoder has not
been able to learn a transformation on the target sets which
allows the source classifier to correctly classify it. When we
ran the test, we saw the discriminator was quite dominant. In
such a case, the adapter is not really able to learn, since it is
not able to extract viable information from the discriminator’s
gradients on how to adjust its weights to better be able to
fool it. We reasoned that this was because the discriminator’s
NN ended with a LogSoftMax, which squishes all the inputs
to between 0 and 1. When the discriminator makes a decision
with very high confidence, it means the output of the activation
function is near the extremes. At the extremes, the slope of
the function is very small, which means very uninformative for
the adaptive NN. As a result, at the beginning of the learning
process when the adaptive encoder is just trying out random
encoding, the discriminator is rejecting with high confidence
and the gradient is very uninformative for the adaptive encoder
so it begins falling behind. So we began by removing the
LogSoftMax.

Although we saw some improvement, it was not substantial.
There was something else going on.

The solution lies in the relationship between the source
encoder and the target encoder. We want the target encoder
to mimic the source encode. It does so by trial and error, yet
how can we make the source encoder as mimicable as possible,
and how can we make the source encoder’s output reachable
by the adaptive encoder? We do so by generalization.

An example may give a good explanation of why we may
want to generalize the encoder. Let’s consider two images of
a three, one from the USPS data set and one from the MNIST
dataset. Both represent the same abstract object, a three. When



we generalize an encoder, we make it so that it captures the
domain invariant descriptions of a three, descriptions of the
abstract object. As a result, when we want to make it such
that the source encoder is generalized, its encoding depends
on the domain invariant description of a MNIST three. When
we use adversarial learning to train the target encoder, all
the target encoder needs to do now is capture the domain
invariant description of three in the USPS dataset. Since the
domain invariant description of three is the same for all its
representations, the better the target encoder is at abstracting
the three, the closer it will get to the MNIST encoding. This
methodology gives a clear path forward for the target encoder
to fool the discriminator.

How do we generalize both the source and target encoder?
We use two techniques: Batch Normalization and Dropout.

Batch Normalization works by normalizing the output of
each layer’s neurons to have a mean of zero and a variance
of one. This normalization reduces the internal covariate shift,
which is the change in the distribution of network activations
due to the change in network parameters during training. By
stabilizing the distribution of these activations, the network
becomes more robust to changes in input data, allowing it to
better capture domain-invariant attributes.

Dropout, on the other hand, randomly deactivates a subset of
neurons during training. This prevents the network from overly
relying on specific neurons or paths, effectively reducing over-
fitting. It forces the network to learn more robust features that
are useful in conjunction with many different random subsets
of the other neurons. This leads to the model learning more
generalized, domain-invariant features, as it cannot depend on
the presence of specific features in the training data. Both these
techniques in tandem allow the adaptive NN to not only be
competitive with the discriminator, but also move in the right
direction: in the direction of abstracting numerals, and in the
direction of mimicking the source encoder.

V. DISCUSSION

Upon finally achieving the desired results, our team was
faced with many philosophical questions about the method.
The first question we pondered was whether an adversarial
model could ever classify the target domain better than the
source domain. The second question was whether flipping the
target domain and source domain leads to better accuracy.
For the first question, we should consider the best possible
scenario for the target encoder. Since the target encoder is
meant to imitate, the best-case scenario is that it imitates the
source encoder perfectly, which means it would have the same
accuracy score. For the second question, as discussed earlier,
the better the source encoder is at abstracting the idea of the
numerals, the easier it is to mimic. This means that the dataset
which gives the encoder the best chance at capturing the
domain-invariant characteristics of the numerals, the easier that
encoder will be to mimic, leading to higher accuracy scores
for both parties. Hence it is possible to achieve a better score
if we flip the source and target domain only in the instance

that an encoder trained on the target domain will capture more
abstract features.

Does the method of Adversarial Domain Adaptation work
for all number datasets? So far in this project, we have focused
on two datasets that are quite similar in style. However, the
effectiveness of this method for datasets with vastly differ-
ent numerical representations remains a question. When we
applied this model to the SVHN dataset, we found that it
performed moderately well, achieving a 70 percent success
rate, which is not particularly impressive. What could be the
issue? Our team hypothesizes that the presence of too many
domain-specific features may hinder the neural network’s
ability to pick up abstract numerical qualities. So, how do
we tackle this issue? This remains an open question in the
machine learning community.

VI. CONCLUSION

In concluding our exploration of Adversarial Discriminative
Domain Adaptation (ADDA), this study has illuminated the
potential of this method in the field of machine learning,
particularly in the context of image classification. Our journey
began with the ambitious goal of overcoming the limitations
of domain specificity in neural networks, an objective that led
us to delve into the intricacies of the ADDA model.

Throughout our research, we have seen firsthand the chal-
lenges and opportunities that come with attempting to gen-
eralize across different data domains. Our work with the
MNIST and USPS datasets has been particularly revealing.
It demonstrated not just the potential of ADDA in bridg-
ing the gap between these domains, but also the nuanced
complexities involved in such an endeavor. The process of
adapting and fine-tuning the ADDA model has been quite
a challenge, revealing crucial insights into the dynamics of
adversarial training, the importance of encoder generalization,
and the delicate interplay between the discriminator and target
encoder.

One of the key takeaways from our research is the critical
role that both batch normalization and dropout play in the
generalization of the encoders. These techniques were instru-
mental in enabling the target encoder to not only compete
with the discriminator but also to move in the direction of
effectively abstracting numerical representations. This led to
more successful mimicry of the source encoder, a step crucial
for the success of the ADDA model.

However, our study also uncovered limitations when ap-
plying the ADDA model to datasets with distinctly different
domain-specific features, such as the SVHN dataset. This
highlighted an important aspect of domain adaptation: the need
for a careful consideration of the characteristics and com-
patibility of the source and target datasets. Our experiences
suggest that the more domain-specific features present, the
more challenging it is for the neural network to extract and
learn abstract numerical qualities.

In light of these findings, we believe that the future of
domain adaptation in machine learning is both promising and
challenging. While our study attempts to make strides in



demonstrating the practical applications and adaptations of the
ADDA model, it also opens up new questions and avenues for
further research. The exploration of more diverse and complex
datasets, the refinement of adversarial training techniques,
and the ongoing challenge to improve model adaptability and
robustness are just a few areas that require further exploration.

REFERENCES

[1] Tzeng, Eric, Judy Hoffman, Kate Saenko, and
Trevor Darrell. ”Adversarial Discriminative Domain
Adaptation.” arXiv preprint arXiv:1702.05464 (2017):
1-8. https://doi.org/10.48550/arXiv.1702.05464


